网站导航

新闻资讯

当前位置:主页 > 新闻资讯 >
关于萃取的知识-飞外
时间:2023-10-01 18:19 点击次数:62

  萃取的概念及萃取实验的教学,一直是高中教学的一个重要内容。它不仅仅是让学生了解溶于水中的溶质与水互不相溶的有机溶剂接触后,经过物理或化学作用,部分或几乎全部转移到有机溶剂里的过程。教材安排这样的教学内容,主要是让学生知道萃取是一种分离技术,在工业上用于物质的分离和提纯,更适合于微量或痕量物质的分离与富集。因此,让学生熟悉萃取操作和物质的分离方法是完全必要的。对于学生实验,选择合适的有机萃取剂,显得尤为重要。苯和四氯化碳作为有机萃取剂,早在上个世纪20年代就进入实验室和工业生产。建国后,在中学化学教材里一直把苯、四氯化碳作为有机萃取剂延续使用到现在已经有半个多世纪了。尤其应该指出的是,新的课程改革以后,无论是人教版的还是苏教版的新编化学教材,仍然把苯和四氯化碳作为有机萃取剂。在教材中为什么这么青睐苯和四氯化碳作为萃取剂呢?以四氯化碳为例,主要原因为:①使用安全,不燃烧也不爆炸;②萃取液颜色呈紫色或浅紫色符合碘的颜色;③在水中的溶解度极低,减少了水洗过程中的溶解损失;④其密度为水的1.6倍,易与水分相,不乳化,减少水洗过程中的夹带损失。那么,苯、四氯化碳果真就是最好的有机萃取剂吗?是其他有机溶剂不可替代的吗?事实并非如此。随着科学技术的不断进步,人们对苯、四氯化碳的性质,尤其是对它们毒性和危害性的认识越发深刻。

  苯的强毒性,在苏教版的《有机化学基础》[1]中已经有了介绍,本文不再赘述,但四氯化碳的高毒性及危害性在中学教材里并没有提及。

  四氯化碳是低沸点、易挥发的、具有难闻的刺激性气味的无色溶液,四氯化碳的毒性以其甲烷氯的取代物为之最。四氯化碳对接触者人体的危害,轻者中毒的一般症状为头痛、疲怠、食欲不振、头昏等。若在高浓度环境中可发生急性中毒,能够抑制中枢神经系统,使人丧失意识,产生麻醉现象,随后会严重损害心脏、肝脏和肾。特别是有肝、肾和器质性神经系统疾患者是不宜接触四氯化碳的。室内四氯化碳的浓度在160mg/m~200mg/m即可发生中毒,因此,国家规定室内最高允许浓度为25mg/m。

  另外,四氯化碳还是消耗臭氧层的罪魁祸首之一,其消耗臭氧的能力为氟利昂的1.1倍。

  在实施新课程改革的今天,突出和加强了学生的验证性和探究性实验,从高一到高二安排了多次的萃取实验。我们每次在组织学生进行萃取实验的时候,室内总有一种刺激性很强的难闻气味。我们一直期盼着教材能使用低毒或无毒的有机溶剂作为萃取剂,能让学生在空气不受污染的环境中来完成这样的实验。实验结果与结论

  在学生实验中,为了避免或减少苯和四氯化碳挥发的气体可能对师生产生的危害,我们一直在寻找低毒或无毒有机萃取剂来替代苯和四氯化碳。在互联网上查找了各个厂家提供的有机萃取剂的理化性质和毒性的相关资料,根据学校实验室现有的有机溶剂,我们选择了二氯甲烷、乙酸乙酯等有机溶剂作萃取剂进行了探索性实验,这是因为二氯甲烷和乙酸乙酯都属于低毒性物质,二氯甲烷其毒性仅是四氯化碳毒性的0.11%,是一种不燃性有机溶剂。二氯甲烷的缺陷:①它是极性分子,能否微溶于水,说法不一[2],能否影响它的萃取率还有待于研究;②二氯甲烷的沸点比四氯化碳还要低,易挥发。但是,二氯甲烷释放到到大气中光解的速率很快,几乎不存留在大气中,其最终分解产物为二氧化碳和盐酸。我们按教材安排的萃取实验内容,分别用四氯化碳、苯、二氯甲烷、乙酸乙酯萃取碘水中的碘,溴水中的溴进行了对比实验,其实验结果与现象见下表:

  实验结果表明:①二氯甲烷萃取碘和溴的现象与四绿化碳萃取碘和溴的现象基本相似,其效果优于四氯化碳;②乙酸乙酯萃取碘和溴的萃取率明显优于苯和四氯化碳,无需二次萃取,但萃取液却呈深黄色。

  在一次学生实验课中,我们用二氯甲烷代替四氯化碳作萃取剂萃取碘、溴进行了试验,从学生的实验情况看,萃取效果和实验现象与四氯化碳比较没有多少差别;整个室内没有难闻刺激性气味,比使用四氯化碳情况要好的多。

  我们认为,苯和四氯化碳这样的高毒性、高污染的有机萃取剂在中学化学教材中应该寿终正寝了,类似二氯甲烷等低毒无毒、低污染的有机萃取剂应该走进我们的教材,其理由如下:

  第一,从科学发展观的角度看,我们的教材,应该跟随时代的发展,引领科学技术的进步,不能落后于现代化的工业生产。我们知道,有机合成工业有一基本常识:对有机溶剂的使用,必须先考虑其毒性、危险性,而不是先考虑反应产率。我们认为,作为学生实验,也应先考虑其毒性和危害性,然后再考虑其实验效果。在现代一般合成实验当中还有一个惯例,萃取溶剂大多可以用的是:“乙酸乙酯、二氯甲烷、等低毒无毒溶剂”,“三氯甲烷这种高毒性溶剂尽量不用”,“四氯化碳、苯这类强致癌性溶剂基本不用”。我国为了实现《蒙特利尔公约》的要求,在2010年彻底淘汰四氯化碳的生产和消费,要从源头上“销毁”我国甲烷氯化物企业每年副产的3-5万吨四氯化碳。现代工业化生产企业有的已经把苯、四氯化碳这样的高毒性有机溶剂淘汰了,有的正在研究逐步行将淘汰。国家鼓励企业以四氯化碳为原料生产其他化学品,使四氯化碳实现资源化利用。国家也加大宣传力度,使人们充分认识到四氯化碳淘汰的紧迫性和必要性。作为教材却没有跟随时代的步伐,还延续介绍这种高毒性高污染的萃取剂,这就成了中学是苯、四氯化碳重要的消费市场之一,显然落后于现代工业生产理念,在这个问题上,这就影响教材整体的时代性和前瞻性了。

  其二,从对环境污染的角度看,也应该淘汰苯、四氯化碳这样的高毒性有机萃取剂。我们知道,四氯化碳的密度比水大,又能微溶于水,在地表水中或土壤里又很难降解。虽然一个学校每次学生做这样的实验所排出含苯和四氯化碳的废液不算多,但我们可以推想一下,全国将有2500多个县市区,按保守计算,平均每个县市区有两所普通高中,那么,每个年级将有40000多个班级,总共要排出多少污染物?

  其三,从人文关怀的角度出发,在教材里也应该取缔苯、四氯化碳这类高毒性的有机溶剂。因为苯、四氯化碳都是低沸点、易挥发的物质,学生做这类实验,必定要与苯、四氯化碳接触,室内总有较强的难闻刺激性气味,其挥发出的蒸气总要通过呼吸道、皮肤(这是人体中毒的主要途径)进入人的体内,另外,学生稍有不慎,苯、四氯化碳直接与皮肤接触,对学生多多少少有所危害。因此,改用低毒无毒的有机溶剂也就势在必行了,否则,这就不在情理之中了。

  最后,从萃取实验的教学目标角度看,中学化学的萃取实验,只是一种定性实验,只是让学生飞外萃取的基本原理和熟悉萃取的基本操作。在中学化学里不需要进行萃取定量分析,也没有必要考虑有机溶剂的萃取率,只要选择的萃取剂能达到萃取效果就可以,也不必苛求非要达到苯和四氯化碳那样的萃取现象和效果。因此,选择低毒无毒的有机溶剂来替代苯、四氯化碳高毒性萃取剂,是可以能达到同样或基本相似的萃取效果,这样,既达到我们的教学目的,又能有利于环保,应该是值得我们探讨的课题。

  萃取是高中化学必修1第一章《从实验学化学》的基本实验操作方法。萃取是一种新方法。学习这种方法,主要是让学生对物质分离和提纯的有更进一步的认识。

  ⒈ 知道什么是分液,初步学会分液的基本操作,理解其适用范围。⒉ 了解分液漏斗的种类和适用范围,学会使用分液漏斗。⒊ 知道什么是萃取、萃取剂,初步学会萃取的基本操作。⒋ 学会应用萃取和分液操作从碘水中提取碘。(2)、过程与方法

  在化学学习和实验过程中,逐渐养成问题意识,能够发现和提出有价值的化学问题,学会评价和反思,逐步形成独立思考的能力,提高自主学习能力,善于与他人合作。(3).情感、态度和价值观

  在学习每个知识点时,先让学生预习,找出问题,再做探究性实验,在实验中分析问题,思考问题,再由实验上升到知识点的学习。这样就更加便于学生学习,学生也因此更加容易理解每个知识点。在教学中突出以下特点:

  通过实验引导学生发现问题,通过实验设计指导验证推论,培养学生发现和解决问题的能力。

  通过实验现象的观察分析,引导学生开展积极的思维活动,培养学生的辨析能力。

  铁架台、烧杯、铁圈、分液漏斗(球形、锥形)、试管、试管架、胶头滴管;四氯化碳、苯、碘水、油水混合物。

  【PPT投影】引导学生指出蒸馏装置中的错误之处。【学生活动】观看、思考、回答。

  【设计意图】检查学生对蒸馏知识的掌握情况。有利于知识的巩固。【问题引入】同学们,在前面我们共同学习了过滤、蒸发和蒸馏等混合物的分离和提纯方法,今天我们将继续学习剩下的两种分离和提纯方法,即分液和萃取。首先请大家根据所预习的知识回答以下问题? 【PPT投影】

  【学生活动】结合预习的内容。学生积极思考,讨论、自由回答。【设计意图】了解学生学习的需要,营造了民主宽松的气氛。检查预习成果,潜意识强化自主学习的作用。培养了学生的表达能力。【过渡】我们来学习分离油水混合物的方法——分液。

  ② 混合液体倒入分液漏斗,将分液漏斗置于铁圈上静置(如教材p9 图1-8)

  ③ 打开分液漏斗活塞,再打开旋塞,使下层液体(水)从分液漏斗下端放出,待油水界面与旋塞上口相切即可关闭旋塞; ④ 把上层液体(油)从分液漏斗上口倒出。【学生活动】倾听、观察、思考。【设计意图】让学生掌握分液漏斗的使用方法。

  【归纳小结】我们已经知道什么是分液漏斗,也初步学会了分液操作。那么你能否总结出分液的适用分离什么样的混合物?

  【问题引入】四氯化碳、苯不溶于水,故四氯化碳与水的混合物、苯与水的混合物用分液的方法分离。哪四氯化碳、苯它们的密度比水大还是小?

  【实验探究1】取一支试管,先加适量的水,再加少量的四氯化碳,最后加少量的苯,观察现象。

  【学生活动】认真观察,从实验现象容易得出结论:四氯化碳不溶于水,密度比水大,在水的下一层。苯不溶于水,密度比水小,在水的上一层。

  【实验探究2】取2支试管,分别注入少量水和四氯化碳,然后均投入小粒碘,观察实验现象。

  【学生活动】认真观察,从实验现象中容易的出结论:碘不易溶于水但易溶于四氯化碳。【设疑】

  若在盛有四氯化碳和水的混合物中投入小粒碘,并不断振荡试管,现象会如何呢?请说出你的猜想和运用的依据。【学生分组讨论、师生交流】

  组织学生对以上分组问题展开讨论,经过一段时间的讨论后,给机会学生发表见解,然后收集各组意见整理,大致有以下几种猜想:

  猜想三:认为碘溶于四氯化碳而不溶于水,依据是碘易溶于四氯化碳,而不易溶于水;

  【实验探究3】在盛有四氯化碳和水的混合物的试管中投入小粒碘,并不断振荡试管,静置后观察现象。

  【学生活动】认真观察,从实验现象中得出结论:水层基本无色。实验证明猜想三是正确的。【实验探究4】

  [学生动手实验]把四氯化碳加入碘水中、振荡,注意观察、比较振荡前后的实验现象,从这个实验你能有什么启发?

  【学生活动】实验、观察现象、相互交流。个别回答:振荡前上层棕黄色,下层无色,振荡后上层无色,下层紫红色;碘会从溶解度较小的(水)溶剂中转移到溶解度较大的(四氯化碳)溶剂中。

  【设计意图】通过问题引入,实验探究,让学生了解新知,培养学生观察和思考能力。【探索新知】其实刚才所做的实验就是从碘水中用四氯化碳萃取碘。那么你能否归纳出萃取的定义呢?

  【学生活动】倾听、思考、交流。个别回答:利用溶质在两种互不相溶的溶剂中的溶解度的差别,用溶解度叫大的溶剂把溶质从溶解度较小的溶剂中提取出来的操作叫萃取。【设计意图】让学生学会归纳。

  【讲解】在萃取中,溶解度较大的溶剂我们把它称做萃取剂,那么可以用作萃取剂的物质有那些特殊的要求?请从刚才的实验进行思考。【学生活动】思考、交流。个别回答:①与原溶剂互不溶;②与溶质不发生化学反应;③溶质在其中的溶解度远大于溶质在原溶剂中的溶解度。

  【设计意图】让学生学会分析问题,学会由特殊到一般的规律。【思考与交流】大家知道碘酒吗?我们能否利用酒精萃取碘水中的碘?为什么?我们还可以选择哪些物质来萃取碘水中的碘?已知碘在有机溶剂中的溶解度大于在水中的溶解度。

  【学生活动】思考、交流。个别回答:①不能用酒精萃取,因为酒精与水互溶;②还可以利用汽油、煤油、苯等。【设计意图】巩固新知,拓展新知。

  【归纳小结】这节课我们通过实验探究,学习了分离互不相溶的液体混合物的方法——分液,也学会了利用萃取剂把溶质从原溶剂中提取出来的方法——萃取。通过学习你知道萃取和分液的关系吗? 【学生活动】倾听、思考、交流。个别回答:萃取之后经常会利用分液作进一步的分离、提纯。【课堂检测】见导学案

  【设计意图】检测学生对本节课的课堂效果是否达到高效。【课后作业】复习本节课内容

  ⑴ 适用范围:分离互不相溶的液体混合物。如油水混合物。⑵ 仪器:分液漏斗 ⑶ 操作要点:

  ② 混合液体倒入分液漏斗,将分液漏斗置于铁圈上静置; ③ 打开分液漏斗活塞,再打开旋塞,使下层液体从分液漏斗下端放出,待油水界面与旋塞上口相切即可关闭旋塞; ④ 把上层液体从分液漏斗上口倒出。

  利用溶质在两种互不相溶的溶剂中的溶解度的差别,用溶解度叫大的溶剂把溶质从溶解度较小的溶剂中提取出来的操作叫萃取。⑵ 萃取剂的要求 ① 与原溶剂互不溶; ② 与溶质不发生化学反应;

  ③ 溶质在其中的溶解度远大于溶质在原溶剂中的溶解度。常用萃取剂:四氯化碳、苯、汽油、煤油

  萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。

  连续萃取精馏一般两个塔同时进行,即萃取精馏塔和溶剂回收塔。连续萃取精馏操作稳定,投资较大,至少需要多加一套溶剂回收装置,处理物料和产品组成比较固定。

  组分混合物从塔中部进入萃取精馏塔,溶剂S则在靠近塔顶的部位连续进入[1],塔顶得 到易挥发组分A,组分B与溶剂S由塔底馏出,进入溶剂回收塔。在溶剂回收塔内,难 挥发组分B与溶剂S进行分离,组分B从塔顶馏出,而溶剂S由塔底馏出并循环回萃取精馏塔。1.2 间歇萃取精馏

  间歇萃取精馏操作方式首先由Yatim.H[2]于1993年提出,是近年来发展起来的具有间歇精馏和萃取精馏双重优点的新型分离过程。间歇萃取精馏在近沸物和共沸物的分离方面显示出了独特的优越性:通过选取不同的溶剂,可完成普通精馏无法完成的分离过程;设备简单,投资小;可单塔分离多组分混合物;设备通用性强,可用同一塔处理种类和组成频繁改换的物系;同间歇共沸精馏相比,萃取剂有更大的选择范围;同变压精馏比较,有更好的经济性。根据萃取剂加入方式,间歇萃取精馏可分为:一次加入方式间歇萃取精馏(BED)和连续加入方式间歇萃取精馏(CBED),如图1.1所示。

  一次加料方式间歇萃取精馏是在操作过程中,萃取剂一次性加入含有物料的塔釜再沸器中,然后按间歇精馏操作,由于萃取剂一般均为沸点较高的物质,故萃取剂主要在再沸器中发挥其改变轻重关键组分相对挥发度的作用,而不能充分利用精馏塔的各块塔板,因此,对物系分离效果较差,且随组分馏出、釜液组成发生改变,所需萃取剂量需增加才能保证产品质量,所以虽然此操作可行,但经济价值低,故实际研究应用较少。

  连续加料方式间歇萃取精馏是在操作过程中,萃取剂从靠近塔顶位置连续加入,为减少萃取剂用量及使分离操作过程分离结果更好,Lang等人提出连续加入方式的四步操作法[3]:

  2.加溶剂进行全回流操作(降低难挥发组分在塔顶馏分中的含量,R=∞,S>

  0); 3.加溶剂进行有限回流比操作(馏出易挥发组分A的成品,R0); 4.无萃取剂加入状况下的有限回流比操作,回收萃取剂(R第四篇:固液萃取

  理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。

  萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。单级萃取、多级逆流萃取的物料流动过程。教学难点:

  如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后,则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。

  物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。

  在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数k0叫分配系数。如图10—2所示,在进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X,萃余相中溶质的摩尔浓度为Y,则:

  k0萃取相X(10--1)萃余相Y假设进行多次萃取才能将目的产物提取完,则进行第n次萃取时,原料液中的溶质浓度为cn,萃取相中溶质的浓度为Xn,萃余相中的浓度为Yn,根据分配定律应有:

  故随着萃取次数的增加,残留在原料体系中的溶质越来越少,但无论进行多少次萃取,都不可能完全将溶质从原料体系中萃取出来。因此在实际生产过程中,往往要综合考虑萃取操作生产成本,只进行有限次的萃取操作。如在中药提取生产时,一般对中药材进行三次萃取后,有效成分基本上被最大程度的萃取,同时经济上也达到最好的效益。

  将萃取剂加入原料液中只萃取一次的操作方式叫单级萃取。如图10—3所示。具体操作过程是:将原料液和萃取剂都加入到混合器中,用搅拌器搅拌,促使溶质从原料液中转移到萃取剂中,经过一段时间后,静臵分层,用分离器把萃取相和萃余相分离后即完成一个萃取操作周期。

  工业上常用液—液单级萃取设备是高速管式离心机和碟片式离心机,进行固液萃取的设备是各种形式的提取罐。

  原料经过多个串联的萃取器,并在每个萃取器中进行萃取操作,这种萃取方式叫多级萃取。按原料的流向与萃取剂的流向关系可分为多级错流萃取、多级逆流萃取、多级平流萃取。图10—4是多级错流萃取示意图。多级错流萃取操作中,原料液从第1级经过第2级流向第3级,最后得到萃余相,萃取剂则由总管道分别注入三个萃取器,原料在每级萃取器经萃取操作后,所得萃取相都回收到同一个储罐中贮存。

  在多级错流萃取中由于溶剂分别加入各级萃取器,故萃取推动力较大,萃取效果好,所以在中药提取分离中被广泛采用。其缺点是要加入大量的萃取溶剂,产品浓度稀,蒸发浓缩回收溶剂时需要消耗较多的能量。

  如果原料的流向从第1级经过若干级后到末级的萃余液,而萃取溶剂从末级逆向流动,经过若干级后到达第1级而得到萃取液,这种萃取操作方式成为多级逆流萃取。一般萃取级数是三级。如青霉素生产中,用乙酸戊酯从澄清的发酵液中分离青霉素时,就采用了三级逆流萃取系统,如图10—5所示。

  在生物制药生产过程中,萃取是一个非常重要的单元操作,通过萃取可以把目的产物从复杂的体系中提取出来,以便于进行更进一步的纯化分离。

  教学目标: 了解植物中目的产物的理化性质。掌握植物浸取常用溶剂的理化性质。理解植物浸取过程基本原理。

  植物浸取常用溶剂的理花性质,植物浸取工艺条件参数的选择依据和方法。教学难点:

  在植物中存在着多种天然大分子物质类,如淀粉、纤维素、木质素、果胶、树脂、鞣质、多肽、蛋白质、酶、核酸等,因为这些分子含有大量的羟基、氨基、羧基等极性基团,因此其分子极性强,在水中溶解度大,用水等极性溶剂提取时容易被浸提出来。但是,非目的产物受热会糊化,影响后续分离纯化操作,因此在提取时要尽量避免将其浸出。

  植物中的目的产物有生物碱、苷类、醌、黄酮、香豆素、木脂素、萜类、甾体及其苷类、挥发油、色素物质等,这些物质一般都具有生理活性,因而是中药有效成分。这些物质的分子极性分布范围宽,且从强极性到非极性都有相应的物质存在,因而植物中的有效成分溶解性比较复杂。现分别介绍如下:

  生物碱是一类含氮的天然有机化合物,具广泛的生理活性。生物碱分子中的氮原子与氨分子中的氮原子一样,有一对孤电子,对质子有一定程度的亲和力,当与酸反应中和后,氮原子可由三价转为五价而成盐,因而具有碱性。在植物中,大多数生物碱与有机酸结合成盐而存在,少数与无机酸结合成盐而存在,有些生物碱碱性弱,以游离状态存在,还有部分与糖结合成苷类的形式存在。

  大多数生物碱不溶或难溶于水,可溶于乙醇、、丙酮等有机溶剂;生物碱盐类则可溶于水,因此,加入一定的有机酸或无机酸作浸出辅助剂,使生物碱转成盐后,可用水作溶剂提取。

  苷类又称配糖体,是糖或糖的衍生物如氨基糖、糖醛酸等,与另一类非糖物质通过糖的端基碳原子连接而成的化合物。其中非糖部分称为苷元或配基,其连接键称为苷键。按化学结构可分为香豆素苷、木脂素苷、蒽醌苷、黄酮苷、吲哚苷等多种,其亲水性随苷元化学结构、所连接糖的种类和数目有较显著的区别,但大多数苷类亲水性强,可用水提取,也可用不同浓度的乙醇提取。

  醌类是具有α,β-不饱和酮结构一类化合物,从结构上可分为苯醌、萘醌、菲醌、蒽醌等四类。醌类化合物中含酚羟基团越多,颜色则越深。天然醌类多为有色晶体。苯醌及蒽醌多以游离状态存在,蒽醌往往结合成苷。游离的醌类多具升华性,小分子的苯醌类及茶酮类具有挥发性,能随水蒸汽蒸馏,可因此进行提取、精制。游离酮类多溶于乙醇、乙酸、苯、氯仿等有机溶剂,微溶或不溶于水。而配基成苷后,极性增大,易溶于甲醇、乙醇、热水,几乎不溶于苯、乙醇等非极性溶剂。蒽醌类衍生物多具有酚羟基,故呈酸性,易溶于碱性溶剂。分子中酚羟基的数目及位臵不同,酸性强弱也不一样。

  黄酮类化合物的基本母核是无苯基色原酮,有的具有良好的心脑血管药理活性,有的具有抗菌消炎作用,有的具有保肝作用。游离黄酮苷元难溶或不溶于水,易溶于乙醇,可用不同浓度的乙醇提取;黄酮苷类可溶于水也可溶于醇,可用水或不同浓度的乙醇提取。

  萜类化合物是由若干异戊二烯结构单元组成的碳氢化合物,可用(C5H8)n表示其分子式,n为大于2的整数。当n是2时称单萜,是3时称倍半萜,是4时称双萜,是5时称二倍半萜,于此类推可对复杂的萜命名。

  分子量较小的萜类化合物如单萜和倍半萜多为有特殊气味的挥发性油状液体,其沸点随分子量和双键数量的增加而提高;分子量较大的萜类如二萜、三萜多为固体结晶。萜类化合物大多具有苦味,也有一些萜类化合物有极强的甜味,甜菊苷就是比蔗糖甜100倍的甜味剂。萜类化合物大多不溶于水而易溶于非极性有机溶剂中,如青蒿素溶解于石油醚。萜类化合物成苷后水溶性提高而易溶于热水,另外含有内酯结构的萜类化合物易溶于碱性水溶液中。

  香豆素是邻羟基桂皮酸的内酯,其分子结构是以苯骈α-吡喃酮为母核。根据其结构特征可分为四大类,即简单香豆素类,喃喃香豆素类、吡喃香豆素类及其他香豆素类。游离的香豆素多数有较好的结晶,且大多有香味。香豆素中分子量小的有挥发性,能随水蒸汽蒸馏,并能升华。香豆素苷多数无香味和挥发性,也不能升华。游离的香豆素能溶于沸水,难溶于冷水,易溶于甲醇、乙醇、叙情和;香豆素苷类能溶于水、甲醇和乙醇,而难溶于乙醇等极性小的有机溶剂。香豆素类及其苷因分子中具有内酯环,在强碱溶液中内酯环可以开环生成顺邻羟基桂皮酸盐,但加酸又可重新闭环成为原来的内酯。但如与碱长时间加热,则可转变为稳定的反邻羟基桂皮酸盐。因此用碱液提取香豆素时,必须注意碱液的浓度,并应避免长时间加热,以防破坏内酯环。

  木脂素是一类由两分子苯丙素衍生物聚合而成的天然化合物,多数呈游离状态,少数与糖结合成苷而存在于植物的木部和树脂中。多数为无色结晶,一般无挥发性,不能随水蒸气蒸馏,少数木脂素在常压下能升华。游离的木脂素是亲脂性的,一般难溶于水,易溶于乙醇和亲脂性有机溶剂中;具有酚羟基的木脂素可溶于碱性水溶液中。木脂素与糖结合成苷后分子极性增加,在水中的溶解度也增大。

  甾体类化合物是广泛存在于自然界中的一类天然化学成分,包括植物甾醇、胆汁酸、c21甾类、昆虫变态激素、强心苷、甾体皂苷、甾体生物碱、蟾毒配基等。其基本结构中母核是环戊烷骈多氢菲。

  强心苷多为无定型粉末或者无色结晶,具有旋光性,一般可溶于水、乙醇、丙酮等极性溶剂,微溶于乙酸乙酯、含醇氯仿,几乎不溶于、苯、石油醚等极性小的溶剂。

  挥发油类又称精油,是一类具有挥发性的油状液体,大部分具有香气,如薄荷油、丁香油等。挥发油难溶于水,能完全溶解于无水乙醇、、氯仿、脂肪油中。在各种不同浓度的含水乙醇中可溶解一定量,乙醇浓度愈小,挥发油溶解的量也愈少。挥发油少量地溶解于水后使水溶液具该挥发油特有的香气。

  天然产物的理化性质是植物浸取操作的理论依据,但在设计提取方法时,要进行多次实验,获得最佳的工艺参数,筛选出最可靠的工艺流程。

  因为提取的植物产品绝大多数是作医、食用原料,所以提取用溶剂必须是“安全、廉价”的,即对有效成分是化学惰性的,对人无毒理反应,能最大程度地浸出目的产物而最小程度地浸出非目的产物,另外,在经济上是廉价的。事实上,同时满足上述条件的溶剂几乎没有。在实际生产过程中,往往是多种溶剂按一定比例混合使用以达到生产要求。

  水:极性大,溶解范围广,价格便宜。植物中多种成分如生物碱盐类、苦味物质、有机酸、蛋白质、单糖和低聚糖、淀粉、菊糖、树脂、果胶、黏液质、色素、维生素、酶和少量挥发油等都能被水溶解浸出。其缺点是选择性差,非目的产物被浸出量大,给纯化操作带来困难。

  乙醇:中强极性,能与水以任意比例相混,乙醇浓度越高溶液极性越低。各种目的产物在乙醇中的溶解度随乙醇浓度的变化而变化。90%的乙醇用来浸取挥发油、有机酸、树脂、叶绿素等,50%~70%的乙醇用来浸提生物碱、甙类等,50%以下的乙醇用来浸取苦味物质、蒽醌类化合物。

  :是非极性溶剂,微溶于水(1:12),可与乙醇及其他有机溶剂任意混溶。选择性强,能溶解生物碱、树脂、挥发油、某些甙类。大部分溶解于水的成分在中不溶解。缺点是易燃,价格高,有药理副反应,常用于精制提纯,最后要从溶液中完全除去。

  氯仿:是非极性溶剂,在水中微溶,与乙醇、能任意混溶。可溶解生物碱、甙类、挥发油、树脂等,不能溶解蛋白质、鞣质等极性物质。氯仿有强烈的药理作用,应在浸出液中尽量除去。

  除此之外,丙酮和石油醚也是常用溶剂,可以用于脱水脱脂和浸取,但有较强挥发性和易燃性,且具有一定的毒性,故应从最后制剂中除去。

  为提高浸提效果,增加目的产物的溶解度,增加制剂的稳定性,以及除去或减少某些物质,常在浸提溶剂中加入辅助剂。常用辅助剂有酸、碱、表面活性剂。

  加入硫酸、盐酸、醋酸、酒石酸、枸橼酸等,可促进生物碱溶解,提高部分生物碱的稳定性,同时可使有机酸游离而易被溶剂萃取。

  加入氨水、碳酸钙、碳酸钠、碳酸氢钠等,可增加皂甙、有机酸、黄酮、蒽醌和某些酚性成分的溶解度和稳定性。在含生物碱的浸取液中加碱可使生物碱游离,便于后续萃取。

  加入表面活性剂可强化润湿增溶,降低植物材料与溶剂间的界面张力,使润湿角变小,促使溶剂和材料之间的润湿渗透。常用表面活性剂有非离子型、阴离子型、阳离子型,根据植物材料和溶剂确定使用型号。

  细胞是构成植物组织的基本单元,组成植物细壁的主要成分是纤维素,具有刚性,其功能是支持和保护细胞内的原生质体,防止细胞因吸涨而破裂,保持细胞的正常形态。

  原生质可分为细胞核、细胞质、质体及线粒体。构成原生质的化学成分有核糖核酸、蛋白质、酶、维生素、淀粉、脂类,细胞的代谢产物有糖类、苷类、生物碱、鞣质、脂肪与蜡、挥发油,他们都存在于原生质中。

  在植物细胞壁和原生质体之间的细胞膜,是控制物质进出细胞的门户,它有选择性地让某些分子进入或排出细胞。

  中药有效成分提取过程就是将目的产物从细胞植物内转移到细胞外的溶剂中,如果将细胞壁破碎则能最大程度地获得有效成分,但很容易将非目的产物一并提取出来,造成纯化困难。所以在实际生产中,一般不会采用破碎细胞的提取方法,常根据传质过程和传质机理调控有关工艺参数实现最大提取效率。

  浸取就是利用适当溶剂和方式把植物中的有效成分分离出来的操作过程,又称为提取。提取所得到的液体称为浸出液,浓缩干燥后称为浸膏。植物浸取操作属于固液萃取。

  当固体与溶剂经过长时间接触后,溶质溶解过程结束,此时固体内空隙中液体的浓度与固体周围液体的浓度相等,液体的组成不再随时间而改变,即固液体系达到平衡状态,这就是一个完整的浸取过程。

  完整的浸取过程有以下几个阶段:(1)浸润渗透 溶剂被吸附在植物材料表面,由于液体静压力和植物材料毛细作用,被吸附的溶剂渗透到植物细胞组织内部的过程。溶剂渗透到植物细胞组织中后使干皱的细胞膨胀,恢复细胞壁的通透性,形成通道,能够让目的产物从细胞内扩散出来。

  (2)解吸与溶解 由于目的产物各成分在细胞内相互之间有吸附作用,需要破坏吸附力才能溶解。因此溶剂在溶解溶质之前首先要解除吸附作用,即解吸。解吸后溶质进入溶剂即溶解。

  (3)扩散 随着细胞内溶质进入溶剂而浓度增大,在细胞内外产生了溶质浓度差,从而产生了渗透压,溶质将进入低浓度溶液中,溶剂将要进入高浓度溶液中,引起溶质从高浓度部位向低浓度部位的扩散过程。扩散可分为内扩散和外扩散两个阶段。内扩散就是细胞内已经进入溶剂中的溶质,随溶剂通过细胞壁转移到细胞外的过程,外扩散就是植物材料和溶剂边界层的溶质传递到溶剂主体中去的过程。

  研究表明,在通常浸取条件下,溶剂进入细胞后,溶质的溶解速度很大,但溶质的内扩散速度和外扩散速度较低。提高扩散速度的途径有两条,其一是通过搅拌产生湍流提高外扩散速度;其二是不断用溶剂臵换出固液界面上的浓溶液,始终保持细胞内外高浓度差,促使溶质不断扩散出细胞壁,强化浸取操作。

  在植物浸取过程中,有多种因素对浸取过程产生重要的影响,影响浸取回收率的高低。这些因素包括温度、压力、酸碱性、颗粒直径、浸取时间、溶剂用量、浸取次数、液体运动状态等。为达到浸取成本低回收率高的浸取效果,必须通过查阅文献资料和做现场实验求出这些因素的最佳参数,作为生产操作时的控制依据。在工程上习惯地把这些参数称为工艺条件。

  一般来讲,温度升高能使植物组织软化并促进膨胀,增加了可溶性成分的溶解和扩散速度,所以浸取温度越高,浸出速度越快。但温度升高后,某些目的产物不稳定发生分解变质,同时使挥发性目的产物挥发散失。因此,要把浸取温度控制在适当的范围。中药提取时,根据处方情况可把浸取温度控制在100℃以下。

  2.浸取时间 浸取过程是一个溶剂进入细胞溶解目的产物并向外扩散的过程,浸取所需时间长短视植物材料本身结构和溶剂性质而定。如果原材料的组织结构细密,溶质扩散速度慢,所需时间就长,如果所用植物材料的组织疏松则所需时间就短。溶剂穿透力强且对目的产物溶解性好则所需时间短,反之则长。浸取所用时间的长短要通过中试实验来确定,一般每批中药材提取的时间大约是2—4个小时。

  植物提取一般是在常压沸点下进行,但对于溶剂较难渗透到植物组织内部的浸出操作,提高压力有利于浸出过程,因为在较高压力下植物组织内部细胞被破坏,加速了润湿渗透过程,使只组织内部毛细孔更快地充满溶剂,有利于溶质扩散。超临界萃取就属于加压浸取。对于组织疏松的材料可不用加压操作,因影响浸出速度的主要因素是扩散过程,加大压力对提高浸出速度无显著效果。

  在目的产物浸出过程中,溶剂的PH值对浸出速度有影响。某些目的产物可溶解于酸性溶剂,则要使用酸性溶剂浸提,有些目的产物易溶解于碱性溶液因而要选择碱性溶剂提取。根据目的产物的酸碱性质可确定提取过程中溶剂PH值的范围。

  可用萃取公式进行理论计算再经过实验校验后即可得到溶剂的用量。在工业生产中,经验公式和经验值是技术操作的参数依据,一般溶剂用量是原材料的2~5倍,经过三次浸取就可认为提取完成。

  因在浸取过程中控制速度的关键步骤是扩散阶段,因此可以通过产生错流或湍流,不断地将植物材料表面上高浓度的溶液与低浓度的溶液混合而使溶质被扩散,保持细胞内外高渗透压,提高扩散速度。通过搅拌或者用离心泵强制溶剂流动可达到提高扩散速度的目的。

  植物材料多是处于干燥状态,在正式浸取前需要预浸泡,使植物组织软化和细胞壁被浸润而膨胀,便于浸取时溶质的加速溶解和扩散。

  掌握植物浸取煎煮工艺、浸渍工艺、渗漉工艺、回流提取工艺、压榨工艺的原理、工艺过程及设备结构。

  植物浸取工艺过程、设备结构及操作方法。教学难点: 工艺原理及选用。教学内容:

  将植物用水加热煮沸一定时间提取目的产物的方法称为煎煮法。这是一种传统方法,可分为常压煎煮法、加压煎煮法、减压煎煮法。常压煎煮法是应用得最广泛的方法。煎煮法适合于目的产物可溶于水,且对加热不敏感的植物材料。

  煎煮提取工艺操作过程是:将预处理了植物材料装入煎煮容器中,用水浸没原材料,待植物材料软化润胀后,用直接蒸汽加热至沸腾,然后改用间接蒸汽加热,保持微沸状态,经过一定时间后将浸取液通过筛网过滤装入贮液罐,用新鲜水重复三次,合并浸取液,静臵过夜,沉淀过滤,所得滤液即浸提液经浓缩干燥即得提取物。

  煎煮设备可分为传统煎煮器、密闭煎煮器、强制循环煎煮器、多能提取罐等四种类型。(july是几月?july代表7月份,英文缩写为jul,共有31天 ,源自于拉丁文Julius(即朱里斯)。)

  在植物提取生产中现已经不再使用传统煎煮器,广泛使用的是多功能提取罐。多功能提取罐可以进行多种方法的浸取操作。

  二、浸渍提取工艺 浸渍法属于静态提取方法,是将已预处理过的植物材料装入密闭容器在常温或加热条件下进行浸取目的产物的操作过程。

  通过浸渍法所得的浸取液在不低于浸渍温度下能较好地保持其澄清度,操作简单易行,其缺点是时间长,溶剂用量大,浸出效率低。

  冷浸法 在室温或更低温度下进行的浸渍操作。一般是将植物材料装入密闭浸渍器中,加入溶剂后密闭,于室温下浸泡3~5日或更长的时间,适当振动或搅拌。到规定时间后过滤浸出液,压榨残渣,使残液析出,将压榨液与滤液合并,静臵一天后再过滤得浸出液待用。

  热浸法 热浸法与冷浸法相比,只是当植物材料被装入密闭容器后需 通蒸汽加热,其他操作相似。在热浸法中如使用乙醇作溶剂,浸渍温度应控制 在40℃~60℃的范围内,如果是用水作溶剂,浸渍温度可以控制在60℃~80℃的范围。

  热浸法可大幅度缩短时间,提高了浸取效率,但提取出的杂质较多,浸取液澄清度差,冷却后有沉淀析出,需要精制。

  浸渍法所使用的设备主要是浸渍器和压榨器。各种多功能提取罐都可以作浸渍器使用。

  三、渗漉提取工艺 将植物材料粉碎后装入上大下小的渗漉筒或渗漉罐中,用溶剂边浸泡边流出的连续浸取过程称为渗漉。在渗漉过程中,溶剂从上方加入,连续流过植物材料而不断溶出溶质,溶剂中溶质浓度从小增大,到最后以高浓度溶液流出。

  渗漉法提取过程类似多次浸出过程,浸出液可以达到较高的浓度,浸出效果好。同时,渗漉法不需加热,溶剂用量少,过滤要求低,适用于热敏性、易挥发和剧毒物质的提取,使用渗漉法可以进行含量低但要求有较高提取浓度的植物提取。但不适用于黏度高、流动性差的物料的提取。

  现将有关渗漉法的操作工艺流程和操作方法介绍如下: 1.工艺流程 2.操作过程

  首先将植物材料净选后进行前处理,并粉碎成要求的规格。颗粒规格一般是中粗级,对于切片要求厚度为0.5mm。原材料颗粒太细,溶剂难以通过而影响浸取速度。其次用0.7~1倍量的溶剂浸润原材料4小时左右,待原材料组织润胀后将其装入渗漉罐中,将料层压平均匀,用滤纸或纱布盖料,再覆盖盖板,以免原材料浮起。再次浸渍排气。将原材料装入罐后,打开底部阀门,从罐上方加入溶剂,将原材料颗粒之间的空气向下排出,待空气排完后关闭底部阀门,继续加溶剂至超过液面5~8厘米,加盖放臵24~48小时。最后将溶剂从罐上方连续加入罐中,打开底部阀门,调整流速,进行渗漉浸取。

  回流法是用乙醇等易挥发的有机溶剂进行加热浸取的方法。当有机溶剂在提取罐中受热后蒸发,其蒸汽被引入到冷凝器中再次冷凝成液体并回流到提取罐中继续进行浸取操作,直至目的产物被提取完成为止。

  回流提取法本质上是浸渍法,可分为热回流提取和循环提取,其工艺特点是溶剂循环使用,浸取更加完全。缺点是由于加热时间长,故不适用于热敏性物料和挥发性物料的提取。

  进行回流提取的装臵是多功能提取罐,图10—11是多功能中药提取罐回流提取工艺流程示意图。

  用机械加压的方法使液固组织发生体积变化而组织破碎,并使液体与固体组织分离的过程,称为压榨提取法。压榨提取法是古老的植物提取法。现在制糖、榨油、果汁、香油、食用色素提取等行业仍然广泛地使用。

  压榨提取法的优点是不破坏目的产物的组成和结构,能保持目的产物本来的组成成分物理化学性质不改变,因而主要用于热敏性物质、水溶性的氨基酸、蛋白质、酶、食用风味物质、食用色素、植物油等目的产物的提取。

  本法榨取的是氨基酸、酶、蛋白质、多糖、色素果汁等。所用植物原材料是新鲜材料,采用干压榨或湿压榨法榨取。干压榨法是在榨取过程中不加水洗涤原材料,施加压力直至无液体流出为止。干压榨法提取率不高,正逐渐被淘汰。现广泛使用的是湿压榨法,即在压榨过程中不断加水洗涤原材料,直到把目的产物全部榨取出来为止。

  在进行湿压榨法前要把原材料洗涤干净无杂质,并用粉碎机粉碎成浆状,然后装筐或装袋进行压榨。

  压榨提取法使用的机械设备分为间歇和连续式两种。间歇式压榨机有水平向挤压机和竖直向压榨机,连续式压榨机主要有螺旋压榨机,水平带式压榨机。在植物提取中使用较多的是螺旋压榨机。

  本法榨取的是油脂、挥发油、油溶性成分。所使用的植物原材料一般是种子、果实、皮等。榨取前原材料要经过剥壳、蒸炒,使组织细胞破坏,将原材料装袋或筐后上机压榨。在压榨过程中原材料发生变化主要是物理变化,经过了物料变形、油脂分离、摩擦发热和水分蒸发等过程。压榨时,料胚在压力作用下,组织的内部表面相互挤压,使油脂不断从料胚孔中被挤压出来,同时原材料在高压下形成坚硬的油饼,物料粒子表面渐趋挤紧,直到挤压表面留下单分子层形成表面油膜,致使饼中残油无法被挤压出来。

  掌握中药提取浓缩相关设备的结构及操作方法。理解中药提取浓缩生产流程设计原理。掌握提取浓缩生产流程的操作方法。教学重点:

  中药提取浓缩相关设备的结构及操作方法。中药提取浓缩生产操作规程。教学难点:

  进行中药提取的设备又称为提取罐。按照外观造型可将提取罐分为五种形式,既直筒式提取罐,蘑菇形提取罐,正锥形提取罐,斜锥形提取罐,搅拌式提取罐。目前普遍采用小直径直筒式提取罐,其结构特点是中间切线循环,采用夹套和直接蒸汽加热,底部加热沸腾,上下同径,阻力小出料顺畅,结构简单,造价低廉。

  蘑菇形提取罐筒体上大下小,上部空间大可防止暴沸。传热快,切线循环,动态效果好。因顶部配有清洗球可进行全方位清洗。采用夹套和底部加热,可保持浸取液沸腾状态。缺点制造难度大,价格高。

  正锥式提取罐筒体直径大,底部直径小,出料口密封性好,但出渣时往往需要人辅助出料。加热时采用夹套方式进行。斜锥式提取罐与正锥式提取罐结构和性能基本相同,但阻力小,出料时较正锥式提取罐容易。

  搅拌式提取罐是在蘑菇形提取罐基础之上发展起来的。在提取罐顶部安装了搅拌器,通过搅拌器的搅动促使溶剂流动,形成动态提取,改善了物料和溶剂接触状态,提高了溶质浸取速度。但机械搅拌对原材料和被提取物都有一定的要求,选用时要予以注意。

  可作为植物提取的设备是多种多样的,各种设备都有其工艺操作条件、原料特性和技术特点,要根据具体情况进行综合分析后选用设备。一般来讲,采用煎煮法提取时多采用蘑菇形提取罐、直锥式提取罐和搅拌式提取罐。浸渍提取时,通常采用带有搅拌或泵循环的浸渍器。

  在生产中只采用一个提取罐进行提取的工艺流程称为单罐提取。现以水提取为例说明单罐提取操作规程和安全事项,如图10—14所示。

  开启空压机观察压力表,调整压力表读数大于0.6MPa,打开压缩进气阀、操作气动阀,用启动气缸把出渣门关闭,用锁紧气缸把门锁紧,用保险气缸把出渣门销住。从投料口假如中药材,关闭投料口。(2)加入溶剂

  打开冷却水阀门使冷却器正常工作,打开回流阀、测压阀使罐内和大气相通,打开进溶剂阀、切线循环阀,气动离心泵向罐内定量注入溶剂。

  打开蒸汽进气阀、筒体夹套蒸汽阀、底部蒸汽阀、蒸汽冷凝水管连接阀、冷凝水旁通阀、底部整齐冷凝水阀。然后打开疏水器阀,关闭冷凝水旁通阀,及时观察罐内提取温度及压力,沸腾后关闭夹套蒸汽阀,用底部蒸汽阀加热维持沸腾,一直达到工艺要求时间。

  通如入整齐后,打开底部出液阀、切线循环阀,启动离心泵进行顺流循环,然后打开上提取液出液阀、逆流循环阀,关闭切线阀、底部出液阀,进行逆流循环。

  开启溶剂回流阀、收油回流阀、放空阀,关闭回流阀V2,通过油水分离器上的视镜观察油面,打开收油阀V10、调节回流阀控制收取轻油,通过控制阀V8收取重油。

  关闭蒸汽系统各阀门,打开底部出液阀V32、过滤阀V24,关闭逆流循环阀V29、上提取出液阀V30,启动离心泵将提取液通过过滤器送入储液罐。

  提取完成后,依次关闭各功能阀,操作启动阀P1,退出安全销后松开阀P2紧锁块,打开阀P3使出渣门缓缓打开,使药渣落下。

  打开逆流循环阀V29,用温水冲洗罐内及出渣门密封条等,开自来水阀冲洗提取罐及软管。

  在生产过程中需要注意罐内的压力变化情况,按规定允许使用压力。罐体及出渣门夹套使用蒸汽压力≤0.3MPa;罐内压力为常压;气缸使用压缩空气压力0.7MPa。严禁罐内超压使用。

  根据目的产物和杂质的理化性质,对提取液的纯化方式多种多样。最常见的方法有沉淀、大孔树脂吸附、离子交换、结晶等方法。在中药制药工业化生产过程中,通常采用水或者乙醇将杂质沉淀后静臵过夜,然后再过滤得澄清液的工艺流程,也有采用大孔树脂吸附法进行精制的。比较典型的中药提取液纯化工艺流程是提取法与纯化方法的有机结合,主要有水提醇沉法和醇提水沉法两种。

  用水提取浓缩后,向提取液中加入一定浓度的乙醇,沉淀过滤去除杂质的方法称为水提醇沉法。在本法的基本原理是,中药有效成分如生物碱、苷、有机酸、多糖等易溶于水和乙醇,而蛋白质、淀粉、粘液质、数胶、和无机盐等杂质均不溶解于高浓度的乙醇。加入高浓度乙醇既能通过沉淀去除杂质,同时也保留了既溶于水又溶于乙醇的中药有效成分。

  在实际操作中加入的乙醇量要准确,当溶液中乙醇的浓度在50%~60%时,可去除淀粉杂质,含醇量达75%时,可除去蛋白质等杂质,当含醇量达80%时,几乎可除去全部蛋白质和多糖、无机盐类杂质。

  醇提水沉法的基本原理与水提醇沉法大致相同。其不同之处是先用70%~90%的乙醇提取静臵滤过,经蒸馏回收乙醇后再冷藏滤过则可将沉淀去除。用乙醇提取的优点是减少生药中粘液质、淀粉、蛋白质、树脂等的溶出,简化了后续纯化操作,同时因操作工序少,药液受热时间短,有效成分损失小。其缺点是不能将鞣质彻底除掉,颜色较水提醇沉法深,可能是乙醇提出的脂溶性色素较多之故。

  除以上介绍的除去杂质的方法外,还有用5%~10%的明胶溶液、20%~30%的石灰乳作沉淀剂去杂、用大孔树脂吸附有效成分去杂以及其他去杂等方法,本课程不对这部分内容作深入讨论。

  由于待提取的目的产物存在的形式和其理化性质不同,植物提取纯化方法也就不同。按照使用的溶剂的种类,可把中药提取分为水提取法、醇提取法和其他有机溶剂提取法;如果按照溶剂在提取罐中的运动状态,可分为静态提取法和动态提取法。中药提取浓缩生产线包括提取、纯化、浓缩、干燥四个操作单元,根据提取时溶剂的流动状态,可将中药提取生产线分为静态提取和动态提取两种。

  中药静态提取浓缩生产线的特点是,提取罐中的药材和溶剂处于相对的静止状态,这种方法设备投资少、维修率低、提取效率较低。其提取生产线设备组成是:多能式中药提取罐、冷却冷凝器、离心泵、翅片过滤器、储罐、浓缩罐、真空干燥器、精馏塔、醇沉罐、射流线所示。静态提取浓缩生产线是传统中药生产线,正逐渐被动态提取法淘汰。

  中药动态提取生产的全过程是:溶剂进入多功能提取罐中浸提药材后,所得浸提液经高速离心机离心过滤后,得到可直接用于口服液制剂的中药液体,整个生产过程可连续不断地进行,药材与溶剂发生相对的流动。

  中药动态提取生产线)提取装臵:提取装臵为动态多能式中药提取罐,采用热水温浸动态提取工艺,并用板式换热器对进入提取关的溶剂水进行预热。本提取工艺提取温度95℃,浸提时间较短。药材与溶剂处于一种相对运动,有利于有效成分的溶出。

  (2)固液分离装臵:采用三级分离工艺,用外溢式三足离心机、液体振荡筛、管式高速离心机对中药提取液进行三次分离,使药渣和3m以上的悬浮微粒被分离除去,所得药液澄明度好,同时避免了后续蒸发浓缩过程结焦粘壁和管道堵塞等问题。

  (4)喷雾干燥:离心喷雾干燥机干燥时间短,产品粒度均匀,水溶性好,目的产物活性损失小,是当今制药企业广泛采用的干燥设备。经浓缩后的药液可直接送入离心喷雾干燥机中干燥。

  掌握中药提取浓缩生产流程平面布臵和立面布臵的一般要求。了解非工艺流程的设计内容。教学重点:

  中药提取车间不同的工段对车间卫生的要求是不一样的,全部生产过程的前处理段、提取段、浓缩段可在非洁净区域进行,其余四个工段必须在30万级以上的洁净车间内完成。

  平面设计包括总体设计和车间平面布臵。在总体设计时要对厂区进行生产区、行政区、辅助区、生活区的合理划分。同时对建筑物及构造物的位臵、堆场、管线等作出合理的安排,确保安全卫生沐浴保障生产的顺利进行。

  在完成总平面布局设计和工艺流程设计后,即可进行车间布臵设计。车间平面布臵设计要遵守三个方面的原则。

  厂房的布臵形式要符合产品特点。制药车间主要有集中式和分散式两种。集中式是指将生产各工序及辅助设施集中在一栋厂房内,这是制药车间主要形式;分散式就是将全部或一部分工序及辅助设施分散布臵在单独的厂房内。在具体应用时,生产规模小的车间各工序联系紧密,应优先考虑集中式布臵;生产规模大的车间,各生产工序特点有明显的差异,可考虑分散式布臵。

  生产车间有各工序用室、控制室组成;辅助用室有空调、动力、配电、机修、检验室等;生活行政用室有车间办公室、会议室、厕所等;其他特殊用室有沐浴室、风淋室、风淋通道等。

  车间内的设备布臵基本原则是:保证工艺流程顺利进行,具有相同卫生要求的设备集中布臵,相同用途、同类型的、操作中有关的设备应尽量集中布臵,布臵设备时应排列整齐,留有适当距离,物料输送的距离和设备间的管路应尽可能短,避免管线与物料输送路线交叉往返。在采光以自然光为主的车间内,布臵设备时应尽量做到背光操作,高大设备要避免靠窗布臵,以免影响采光。洁净室内要求洁净度较高的设备应布臵在靠近进风口的主气流附近。

  提取车间平面布臵设计的总体要求是布臵合理、紧凑,能避免人流物流混杂,满足GMP要求。具体原则是:

  车间内通道专用,人与物的电梯分开、出入口分开,原料与成品出入口分开;人与物分别设臵净化室,净化室洁净级别符合要求;操作区内只允许防止与操作有关的资料,设臵必要的工艺设备。用于制造贮存的区域不得用作非本区域内工作人员的通道。

  洁净室的布臵设计遵循以下原则:高等级洁净区布臵在人员最少到达的地方,并宜靠近空调房;空气洁净度相同的房间要相对集中;不同空气洁净度房间或区域按洁净度由高到低从里到外的顺序布臵,并要有防止污染措施,如设臵气闸室、空区吹淋室或传递窗。

  辅助设施的布臵要求是:原材料、半成品存放室与生产区的距离要尽量缩短,减少涂中污染;所有存放室面积大小要与生产规模想适应。称量室宜靠近原辅料存放室,其洁净级别与配料室相同;提取车间的洗涤室可布臵在非洁净区。洁净工作服的洗涤室、干燥室的洁净级别可低于生产区一个等级;维修保养室不宜设臵在洁净生产区内。

  2.车间布臵 车间的布臵分为平面布臵和立面布臵。平面布臵是指把设备如何排列在车间地平面上,立面布臵是指把各种设备放臵在何种高度的空间中。在进行车间布臵时,为表示各种设备相互之间的平面和空间位臵关系,应绘制平面布臵图和立面布臵图,并在其中标明平面距离和空间高度距离。

  布臵设计时,要认真熟悉车间布臵设计图,并同工艺员一起仔细分析工艺参数,确定生产设备;充分考虑空间的合理利用,按生产工段需要划分不同的空间区域,做到立体交叉清晰;充分考虑进行设备维修空间(包括设备吊装、更换、维修)、控制操作、管网布臵、人流和物流通道等所需空间,并注意到工人操作安全、便捷,能减轻工人劳动强度。通过全盘的周密考虑,绘制出车间平面布臵图和立面布臵图,并提出非工艺设计的基本要求。

  在本书附录中图1是年处理中药材3000吨的中药提取工艺流程实例图,在本例中采用了双罐提取流程,图2是车间平面布臵图,图3是立面布臵图。

  制药车间的非工艺设计指公用系统和非工艺项目,如土建、给排水、采暖通风、设备安装、管道、电子电气与仪表控制、防腐与保温、环境与安全卫生、经济分析等项目的设计,进行非工艺设计必须由工艺设计人员向非工艺设计人员突出设计要求和设计条件,非工艺设计人员根据这些要求和条件进行非工艺项目设计。本书只重点介绍与洁净室相关的建筑设计。

  药厂建筑物按承重结构材料可分为钢筋混凝土结构、混合结构,按结构形式可分为叠砌式、框架式、内框式。药厂的建筑等级耐久性一般是3~4级,使用年限一般规定为40年左右,常要求耐火等级是四级。建筑设计的主要内容是地基与基础、柱梁、楼地面层、楼梯、屋顶、围护门窗等构件。

  在中药提取生产段对车间洁净程度的要求是30万级,所以进行建筑设计时要以《药品质量管理规范》为依据,对地板、门窗、墙角、转角、天花板、地漏等项目的建筑材料和建筑形式进行精心设计,以便符合GMP认证和验证的需要。

  室内的颗粒和微生物的数量都被控制在一定范围的车间叫洁净车间。洁净车间是密闭的,未经净化处理的空气不能进入。因此在设计时,如果墙壁上有窗户则要特别注意密闭性的需要。

  人和任何其他物体都会发尘,洁净室用建筑材料的发尘数量应该最小,所以普通的砖、石和混凝土不能使用,地板砖和瓷砖也难以满足需要。天花板和、墙壁的材料,一般采用彩色钢板;地板材料常用的是耐酸碱并能防火的高分子材料,采用自流坪技术铺成。门窗材料可以使用塑钢和玻璃。

  为防止积累颗粒和残留微生物,同时便于清洗消毒,墙壁与地板和天花板的结合部、房间转角墙壁与墙壁结合部必须是圆结合,不能直角结合。

  门框不设门槛,关闭要严密,朝向洁净度高的一面开启,不宜采用侧拉门和吊门,严禁采用转门,至少有两个或更多的安全出口。

  根据GMP要求,一些辅助设备不能暴露在车间内空气中,需要设计技术夹层将他们隔离。这也便于设备维修。

  以上是洁净车间建筑设计的主要要求,在实际设计工作中,对洁净车间的建筑要求内容更多,项目更细,这需要设计人员认真理解《药品质量管理规范》的具体要求,通过设计实践掌握车间非工艺设计方法。

  同时我们也能满足我们小小的窥私欲哦~~看看别人有什么扮靓武器!hoho~

  2.正文可以化妆包或化妆箱里物品的价格,购买场地、以及每样物品使用的感觉等等~~

  爸比节就要到了哟,在这个爸比节温馨弥漫的节日里,让我们自己的爸比以及孩子的爸比致敬吧~~

  1.标题名为【爸比节】+标题名 2.正文可以是对自己父亲的感谢祝福或者是感动的回忆,也可以是对老公/男朋友的感谢祝福或者是感动的回忆.....3.如果有图片就更温馨啦~~

  声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至: 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

  萃取与蒸馏教案设计 克山三中 贺成宇 一. 教学内容: 萃取与蒸馏 二. 教学目标 1. 知识与技能目标 (1)了解萃取原理,掌握萃取的实验操作; (2)了解蒸馏原理,练习蒸馏操作. 2.......

  在我的经验中,萃取方面的知识是高一学生的弱点,表现在对萃取概念似懂非懂,这就造成对萃取和分液两者的区别和联系认识模糊,不飞外选择萃取剂。通过这一节课的教学我得到深刻的认......

  化学与化工学院实验课程教案模板 (试行) 实验名称 萃取与洗涤 一、实验目的要求: 1、学习萃取的基本原理。 2、掌握萃取与洗涤的操作技术。 二、实验重点与难点: 1 重点:实验原......

  实验一 萃取分离 计划学时:2学时 一、实验的目 (1)了解萃取分离的基本原理,乳化及破乳化。 (2)熟练掌握分液漏斗的选择及各项操作。 二、基本原理 萃取是利用物质在两种不互溶(或......

  定义:在测定样品的同时,于同一样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,以计算回收率。 加标回收率的测定可以反映测试结果的准确度。当按照平行加标......

  高中化学《蒸馏和萃取》说课稿 各位老师,大家好,我是今天的××号考生,我说课的题目是《化学实验基本方法》第二课时:蒸馏和萃取。接下来,我将从以下几个方面开始我的说课。 (过......

  毕业寄语幼儿园大班萃取在我们平凡的日常里,大家一定都接触过寄语吧,通过寄语人们可以心中的所思所想表达出来。相信很多朋友都对写寄语感到非常苦恼吧,以下是小编精心整理的毕......

  蒸馏与萃取 【知识回顾】上周我们主要学习了粗盐提纯,其中涉及到的两个很重要的混合物分离与提纯的方法是? 【学生回答】过滤和蒸发 【教师引导】回忆过滤和蒸发的概念并举例......

如果您有任何问题,请跟我们联系!

联系我们

Copyright © 2028 门徒娱乐注册 TXT地图 HTML地图 XML地图